
Moonshine
Undergraduate Mathematics Society, Columbia University

S. M.-C.

25 March 2015

Contents

1 Basics 1
1.1 Representation Theory of Finite Groups . . . . . . . . . . . . . . 2
1.2 Elliptic Curves and Modular Functions . . . . . . . . . . . . . . . 3

2 Moonshine 4

3 Physics 7

4 Questions 7

Abstract

Moonshine is a sporadic collection of mysterious connections between
the algebraic world of finite groups and the number-theoretic world of
modular functions. We will first introduce these worlds and discuss their
independent interest. Then we will examine the moonshine that connects
them, starting with its discovery and building up to some recent directions
in the theory.

Good (but technical) modern survey: Moonshine, by Duncan, Griffin, Ono
(arXiv:1411.6571)

1 Basics

The word “moonshine” describes a web of connections between finite groups
and modular functions. The theory is quite new, beginning in the late ‘70s, so
this connection is still quite mysterious. I’ll try to give a sense of what’s known
at the moment. But first I want to discuss why moonshine is interesting, and
to understand this we must understand the two fields that it bridges and their
interest to mathematics.
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1.1 Representation Theory of Finite Groups

A representation of a finite group is a “geometric” realization of the group as
linear maps on a vector space. To be precise, a representation of a finite group
G is a morphism ρ : G → GLV to the general linear group of some (finite
dimensional) vector space V .

I think representation theory of finite groups is a particularly beautiful part
of math; it is one of the fields where everything works as perfectly as you could
hope, perhaps even more so. Its usefulness comes from the fact that it can
reduce problems in group theory to probems in linear algebra, which of course
is a powerful tool.

A few more definitions essential definitions. A subrepresentation is a vector
subspace which is invariant under the action of the group, i.e. sent into itself
by every group element. A representation is irreducible if its only subrepresen-
tations are the whole space and the trivial subspace.

The really magical thing about representations of finite groups is that to
understand a representation it turns out you don’t need to know the matrix
each group element is sent to, you only need to know the trace of this matrix.
Given a representation, the function that assigns to each element the trace of
the corresponding matrix is called the character of the representation.

Let’s do an example, to make these ideas more concrete and to introduce
another concept we’ll need. The group S3 is the symmetry group of a triangle,
and acts on itself by left multiplication. Let V be a vector space with a basis
given by the elements of S3. The action of S3 on itself translates to an action
on this vector space, so we get a representation. This construction can be
performed for any group, and the resulting representation is called the regular
representation.

Whenever you see a representation, the first thing you want to do is de-
compose it into irreducibles, i.e. express it as a direct sum of irreducible rep-
resentations. The regular representation is special because it has a very nice
decomposition in to irreducibles: the number of times each irreducible repre-
sentation appears is equal to its dimension. It turns out that S3 has three
irreducible representations, which I’ll call 1, 1′, 2 (the number indicating the di-
mension), so the decomposition of the 6-dimensional regular representation is
6 = 1 + 1′+ 2 + 2. It’s convenient, especially when talking about moonshine, to
refer to representations by their dimension.

The groups that appear most often in moonshine are very special: they are
called sporadic simple groups. A simple group is a group that has no non-trivial
subgroups. Simple groups can be thought of as the atoms of group theory,
because any group can be “factored” in a sense into simple groups (though
many different groups have the same factorization). One of the largest efforts in
mathematics was the classification of finite simple groups, completed over the
course of about 50 years and hundreds of journal articles.

The classification goes like this. Every finite simple group is
1. a cyclic group of prime order,
2. an alternating group of degree at least 5,
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3. a group of Lie type (including about 16 families; these are mostly matrix
groups over finite fields), or

4. one of 26 others.
These 26 others are the sporadic groups.

The largest sporadic group is the monster group M, so named for its truly
immense order ∼ 8×1053. [A fun aside: 20 sporadic groups can be got from the
monster by subgroups and quotients, and these are known as the happy family ;
the other six are known as the pariahs]. The monster group has 194 irreducible
representations, of dimensions

1
196 883
21 296 876
842 609 326
...

1.2 Elliptic Curves and Modular Functions

Now for something completely different. An elliptic curve is a smooth complex
curve with a group structure. They are interesting because they’re super im-
portant in number theory, particularly their rational or integer points, because
these are solutions to diophantine equations.

Modular functions, which are the things we’re really going to be concerned
with, are functions on the moduli space of elliptic curves. Let me explain a
little more what this means. There is a group SL2 Z of 2 × 2 integer matrices
with determinant 1 which acts on the upper half of the complex plane H. This
action is nice, so the quotient SL2 Z\H (identifying points in the same orbit) is
a complex manifold. It turns out that the points of this manifold correspond
naturally with (isomorphism classes of) elliptic curves—I would love to explain
why this is, but I haven’t got the time.

A modular function is a holomorphic function on this space; or equivalently,
a holomorphic function on the upper half-plane invariant under the action of
SL2 Z.

There is also a more general notion of modular function, which comes about
like so. Other groups, in particular subgroup of Γ ⊂ SL2 Z, also acts on H, and
we again get a complex manifold by taking the quotient Γ\H. For certain sub-
groups this produces a moduli space of objects of interest, “decorated” elliptic
curves. For example, for each natural number N there is a subgroup

Γ0(N) = {matrices upper triangular mod n} ⊂ SL2 Z,

and Γ0(N)\H parametrizes isomorphism classes of an elliptic curve together
with a specified cyclic subgroup of order N . The functions on H invariant under
a group Γ, i.e. functions on the space Γ\H, are called modular functions for Γ.

The geometry of the curve Γ\H is closely related to the structure of functions
on it. In particular, the field of functions on a complex curve is generated (over
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C) by a single element precisely when the curve is topologically a sphere (perhaps
with some points removed). When a group Γ has this property it is said to be
a genus zero group, and a generator for the field of modular functions is called
a principal modulus for Γ. A principal modulus for Γ, regarded as a function
Γ\H → C, gives an isomorphism between their compactifications Γ\Ĥ ∼−→ Ĉ
(i.e. is a uniformizing function for Γ\Ĥ).

All of the groups Γ acting on H that we’re interested in include the trans-
formation τ 7→ τ + 1. So a modular function f for Γ, regarded as a function on
H, is periodic: f(τ) = f(τ + 1). This means that f admits a Fourier expansion;
we can write

f(τ) =
∑
n≥N

anq
n,

where q = e2πiτ . This is how we’ll actually work with modular functions, as
functions of q (for q = e2πiτ in the open unit disk).

The standard example of all this is the j-function, which has featured in
some previous UMS talks. The j-function is a principal modulus for SL2 Z, and
its (normalized) Fourier expansion is

j(τ) = q−1 + 0 + 196 884q + 21 493 760q2 + 864 299 970q3 + · · ·

(note that adding or subtracting a constant has no effect on its uniformizing
property, so we can set the constant term to 0). As another example, the
subgroup Γ0(2) ⊂ SL2 Z of matrices upper triangular mod 2 has genus 0, and
its normalized principal modulus is

q−1 + 0 + 276q − 2048q2 + 11202q3 + · · · .

2 Moonshine

We’re finally ready for the observation that forms the basis for moonshine.

1 = 1

196 884 = 1 + 196 883

21 493 760 = 1 + 196 883 + 21 296 876

864 299 970 = 2× 1 + 2× 196 883 + 21 296 876 + 842 609 326

...

The numbers on the left are coefficients of the j-function, and the numbers
on the right are dimensions of representations of the monster.

Let’s stop already and ask: who cares? The point is that this appears too
good to be a coincidence. And if it’s not a coincidence, then it’s happening
because of some big mathematical “thing” that we don’t understand. And we
want to understand it, because it might lead us interesting places . . . and so it
does.
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The first step in understanding this is to regard the right hand side as a single
representation (just as the left hand side is a single function), by introducing
the notion of a grading. A graded representation is representation V that can
be written as a direct sum, e.g.

V = V−1 ⊕ V0 ⊕ V1 ⊕ V2 ⊕ · · · ,

where each Vi is a finite-dimensional subrepresentation. We’d like to talk about
its dimension; the whole representation may be infinite-dimensional, but we can
record the graded dimension, a sort of generating function for the dimensions of
the pieces.

gdimV =
∑
n≥−1

dimVn q
n

With this idea, we can rephrase our idea that “j-coefficients should come from
representations” as

Conjecture 1. There is a graded representation V \ of M such that gdimV \ = j.

Here is another piece of inspiration: the trace of the identity on a vector
space is the dimension of the space, so we can rewrite the graded dimension as

gdimV =
∑
n≥−1

trVn(e)qn.

Writing it like this, we can replace the identity with any other group element
to get a graded character.

gtrV (g) =
∑
n≥−1

trVn(g)qn

If the graded character of the identity is the j-function, then perhaps it’s worth
looking into the graded characters of other monster elements.

Now remember our discussion of principal moduli from earlier: a principal
modulus for a genus-zero group is a function that gives an isomorphism with the
canonical genus-zero surface, the Riemann sphere. Amazingly, after computing
the first few coefficients of these graded characters, it appears that every graded
character is the normalized principal modulus for a genus-zero group!

1 = 1

276 = 1 + 275

−2 048 = 1 + 275− 2 324

11 202 = 2× 1 + 2× 275− 2 324 + 12 974

...

Conway, the first person to make this observation, described it as one of the
most exciting moments of his life:
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after computing several coefficients of these series using information
from the character table of M, he went down to the mathematical
library and found some of the series in the classical book by Jacobi,
with the same coefficients down to the last decimal digit!

This led Conway and Norton to the following conjecture.

Monstrous Moonshine Conjecture. There is a graded representation V \

of M such that for every element g ∈ M, the graded character gtrV \(g) is a
normalized principal modulus for some genus zero group Γg.

Let’s pause and emphasize this for a minute. This is the main purely mathe-
matical content of moonshine, in all its flavors. Moonshine is not a phenomenon
limited to the monster group; there are many examples, and they all consist
mainly of this connection: a graded representation of a finite group whose graded
characters are special, a priori unrelated, functions.

How can one prove such a conjecture? Here is the first attack. By making
guesses for the first few representations (there is only one reasonable guess for a
while), we can use the representation theory of the monster to write down the
first few terms of each graded character. This way we figure out which principal
modulus had ought to be associated to each group element.

Then using representation theory, prove that for the coefficients of these
principal moduli to be (virtual) characters it is enough to check that they satisfy
finitely many congruence relations. Finally, these finitely many relations may
be checked by computer.

However, this is somewhat unsatisfactory because it “just barely” resolves
the conjecture; that is, it doesn’t make any progress toward understanding a
conceptual connection between the monster and principal moduli. A better way
would be to construct the representation explicitly, and this was done shortly
after.

The construction is rather difficult (and I don’t know anything about it),
so I won’t go into it. However, I will try to convey its importance. Remember
that what we want is to understand why there is this connection between the
monster and principal moduli. To have any hope of this understanding, the
representation we find has to be more than just a representation; it should
connect the monster to principal moduli, but it should also connect to other
things, which may explain its existence.

The representation constructed does indeed have some extra structure. A
mathematician would call it a “vertex algebra”, and a physicist would call it a
“conformal field theory” (or perhaps its symmetry algebra). In fact this struc-
ture is exactly preserved by the action of the monster, i.e. the automorphism
group of this structure is M.
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3 Physics

4 Questions

What do modular functions tell us about elliptic curves, or anything else?
What do Jacobi forms tell us about things?
What is a vertex algebra to physicists?
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